

FlexCRFs: Flexible Conditional Random Fields

(Including PCRFs - a parallel version of FlexCRFs)
http://www.jaist.ac.jp/~hieuxuan/flexcrfs/flexcrfs.html

Copyright © 2004-2005 by

Hieu Xuan Phan & Minh Le Nguyen
{hieuxuan, nguyenml}@jaist.ac.jp

Graduate School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST)

Table of Contents
1. Introduction 3

1.1. License 3
1.2. Download 3

2. Building and Installation 4
2.2. Building and Install FlexCRFs 4
2.3. Building and Install PCRFs 5

3. Introduction to Conditional Random Fields 6
3.1. Conditional Random Fields 6
3.2. Inference in CRFs 6
3.3. Training CRFs 7
3.4. Second-order Conditional Random Fields 7
3.5. Parallel Training of CRFs 9

4. How to Use FlexCRFs 11
4.1. Format of Training and Testing Data 11
4.2. FlexCRFs’s Options 11
4.3. Training, Testing, and Predicting for Unlabeled Data 12
4.4. Case Study: Noun Phrase Chunking with FlexCRFs 13

5. How to Use PCRFs 21
5.1. Data Partitioning and Initialization 21
5.2. Parallel Training with PCRFs 21
5.3. Case Study: Large-Scale Text Chunking with PCRFs 22

6. Developing Applications upon FlexCRFs and PCRFs 33
Acknowledgements 34
References 34

 2

1. Introduction
FlexCRFs is a conditional random field toolkit for segmenting and labeling sequence
data written in C/C++ using STL library. It was implemented based on the theoretic
model presented in (Lafferty et al., 2001) and (Sha and Pereira, 2003). The toolkit uses
L-BFGS (Liu and Nocedal, 1989) – an advanced optimization procedure – to train CRF
models. FlexCRFs was designed to deal with hundreds of thousand data sequences and
millions of features. FlexCRFs supports both first-order and second-order Markov CRFs.
We have tested FlexCRFs on Linux (Fedora), Sun Solaris, and MS Visual C++ 7.0 (MS
Windows). Comments, suggestions, and error detections are highly appreciated.

PCRFs is the parallel version of FlexCRFs that allows to train conditional random fields
on massively parallel processing systems supporting Message Passing Interface (MPI).
PCRFs allows to train conditional random fields on large-scale datasets containing up to
millions of data sequences. We have tested PCRFs on massively parallel systems such
as Cray XT3, SGI Altix, and IBM SP.

1.1. License
FlexCRFs and PCRFs are free tools. You can redistribute them and/or modify them
under the terms of GNU General Public License as published by the Free Software
Foundation, either version 2 of the License, or (at your option) any later version.

FlexCRFs and PCRFs are distributed in the hope that they will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY of FINESS
FOR A PARTICULAR PURPOSE. Please see the GNU General Public License for more
details.

1.2. Download
The source code of FlexCRFs and PCRFs can be downloaded from:

http://www.jaist.ac.jp/~hieuxuan/flexcrfs/flexcrfs.html

If you have any question, please feel free to contact us:

Email: {hieuxuan, nguyenml}@jaist.ac.jp or pxhieu@gmail.com

 3

2. Building and Installation

2.2. Building and Install FlexCRFs

Source Code Organization:
Both FlexCRFs and PCRFs were written in C/C++ using STL library. The source code of
FlexCRFs is organized in the directory tree as follows:

apps (user applications, e.g., chunking or POS tagging)
 Chunking (chunking applications)
 NER (named entity recognition)
 POSTagging (part-of-speech tagging)
 <your own apps> (create directories for your own applications here)
bin (outputs of the compiling process)
docs (documents, e.g., this manual)
include (header files)
lib (output library files)
src (source code of FlexCRFs)

crfs (source code of CRFs)
evaluation (source code of evaluation utilities)
feature (source code of CRF feature, feature generator)
math (source code of mathematic functions)
misc (source code of option class, etc.)
trainer (source code of the training procedures)
viterbi (source code of Viterbi algorithm for decoding

CRFs, including searching for n-best label paths)
dataitf (source code of data format and dictionary)
feasel (source code of feature selection utilities)
utils (source code of other utilities, e.g., strtokenizer)

System Requirements:

• Linux/Unix/Cygwin:

o Compiler: GNU C Compiler (gcc) and GNU C++ Compiler (g++)

o Library: STL

• MS Windows 2000, XP:

o Compiler: MS Visual C++ 7.0

o Library: STL

Building and Install FlexCRFs on Linux/Unix:

• Download FlexCRFs and unzip its source code:
$ gunzip FlexCRFs.tar.gz

$ tar –xf FlexCRFs.tar

• Compile (go to FlexCRFs directory):

 4

$ make clean (remove any previous output)

$ make all (compile FlexCRFs)

• Install (you must login the system under the “root” privilege):

$ make install (install FlexCRFs)

$ make uninstall (uninstall FlexCRFs)

The outputs f the training process are several executable files in which the main program
of FlexCRFs is “crf”. All of these files are copied to the “bin” directory. All the objective
files will be put into a statistic library and copied to the “lib” directory.

Building and Install FlexCRFs on MS Windows with Visual C++ 7.0:

2.3. Building and Install PCRFs

Source Code Organization:
PCRFs was written in C/C++ using STL and Message Passing Interface (MPI). It can be
compiled and run on any parallel systems (PC clusters, massively parallel processing
systems) that support MPI. The source code organization is similar to that of FlexCRFs
except that we have different versions of Makefile supporting different platforms.

System Requirements:

• GNU C/C++ compilers (gcc and g++) that support MPI

• STL library

• The parallel system must support a network file system that allows us to mount the
working directory (that contain PCRFs and our applications) to all computing nodes
in order that those computing nodes can read (or write) their training and testing data
partitions independently and simultaneously.

Building PCRFs on Massively Parallel Processing Systems:

• Download PCRFs and unzip its source code:
$ gunzip PCRFs.tar.gz

$ tar –xf PCRFs.tar

We prepare two versions of Makefile for two parallel platforms: Cray XT3 and SGI Altix.
Users can slightly modify the Makefiles for compiling PCRFs on other parallel systems
other than Cray XT3 and SGI Altix.

• Compile (go to PCRFs directory):

$ cp Makefile.CrayXT3 Makefile (if the system is Cray XT3)

$ cp Makefile.SGIAltix Makefile (if the system is SGI Altix)

$ make clean (remove any previous output)

$ make all (compile PCRFs)

 5

3. Introduction to Conditional Random Fields
Conditional random fields (CRFs - Lafferty et al., 2001) are probabilistic models that
were designed for segmenting and labeling sequence data. In this section, we briefly
introduce CRFs in order that users can work with FlexCRFs easily. For a complete
theoretical presentation of CRFs, please see (Lafferty et al., 2001) and (Sha and Pereira,
2003).

3.1. Conditional Random Fields
Let o = {o1,…,oT} be some input data observation sequence. Let S be a finite set of
states, each is associated with a label l (∈ L = { l1, …,lQ}). Let s = {s1,…,sT} be some
state sequence. CRFs (Lafferty et al., 2001) are defined as the conditional probability of
a state sequence given an input observation sequence as follows,

 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

T

1t
)t,o,s(Fexp

)o(
1)o|s(

Z
pθ (1)

where is a normalized factor summing over all label

sequences. F(s, o, t) is the sum of CRF features at time position t:

∑ ∑ ⎟
⎠

⎞
⎜
⎝

⎛
=

='s

T

1t
)t,o,'s(Fexp)o(Z

 ∑ ∑+= −
i j

jjii gf)s,o()s,s()t,o,s(F tt1t λλ (2)

in which fi and gj are edge and state feature functions, respectively. λi and λj (∈ θ = {λ1,
λ2, …}) are the feature weights associated with fi and gj.

fi(st-1, st) ≡ [st-1 = l’][st = l]

gj(o, st) ≡ [xj(o, t)][st = l]

where st = l means that label l is associated with state st. And xj(o, t) is a logical context
predicate that indicates whether or not the observation sequence o (at time t) holds a
particular property or fact of empirical data. [e] is equal to 1 if the logical expression e is
true, and zero otherwise.

3.2. Inference in CRFs
Inference in CRFs is to find the most likely state sequence s* given the input observation
sequence o,

 (3) ⎟
⎠

⎞
⎜
⎝

⎛
== ∑

=

T

1t
ss

* t)o,F(s,expmaxarg)o|s(maxargs θp

To find s*, one can apply the dynamic programming using the Viterbi algorithm (Rabiner,
1989). To avoid an exponential-time search over all possible settings of s, Viterbi stores
the probability of the most likely path up to time t which accounts for the first t
observations and ends in state st. We denote this probability to be ϕt(si) (0 ≤ t < T) and
ϕ0(si) to be the probability of starting in each state si. The recursion is given by:

)}1 t ,os,(Fexp)s({max)s(t1t +=+ jsi j
ϕϕ (4)

 6

The recursion terminates when t =T-1 and the biggest value is p* = argmaxi ϕT(si). At
this time, we can backtrack through the stored information to find the most likely
sequence s*.

3.3. Training CRFs
CRFs are trained by searching the set of weights θ = {λ1, λ2, …} to maximize the log-
likelihood, L, of a given training data set D = {o(j), s(j)}j=1..N:

 ()∑
=

−=
N

j k

kjpL
1

2

2
(j))(

2
)o|s(log

σ
λ

θ ∑ (5)

where the second sum is a Gaussian prior over feature weights with variance σ2, which
provides smoothing to deal with sparsity in the training data (Chen & Rosenfeld, 1999).

When the labels make the state sequence unambiguous, the likelihood function in
exponential models such as CRFs is convex, thus searching the global optimum is
guaranteed. However, the optimum cannot be found analytically. Parameter estimation
for CRFs requires an iterative procedure. It has been shown that quasi-Newton methods,
such as L-BFGS (Liu and Nocedal, 1989), are most efficient (Sha and Pereira, 2003).
This method can avoid the explicit estimation of the Hessian matrix of the log-likelihood
by building up an approximation of it using successive evaluations of the gradient.

L-BFGS is a limited-memory quasi-Newton procedure for convex optimization that
requires the value and the gradient vector of the function to be optimized. Let s(j) denote
the state path of training sequence j in the training set D, then the log-likelihood gradient
component of λk is

 2
)(

1 s

)(

1

)()()o,s(C)o|s()o,s(C
σ
λ

δλ
δ

θ
kj

k

N

j

j
N

j

jj
k

k

pL
−⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
= ∑∑∑

==

 (6)

where Ck(s, o) is the count of feature fk given s and o. The first two terms correspond to
the difference between the empirical and the model expected values of feature fk. The
last term is the first-derivative of the Gaussian prior.

3.4. Second-order Conditional Random Fields
Although the first-order Markov CRFs described above perform well for many
segmenting and labeling tasks, they fail to encode the long-range interactions among
states due to the limitation of the first-order Markov dependency (i.e., the current state
depends only on one previous state). The second-order (Markov) CRFs are stronger in
capturing such interactions, and thus perform better on labeling/segmenting tasks where
the sequential dependencies are essential facts for inference. Sha and Pereira (2003)
have also used second-order CRFs for text chunking, and achieved significant results.
However, their description about this topology of CRFs is not general enough for an
efficient feature selection and applications to other tasks. Here, we present this explicitly
so that others can easily re-implement and apply this model to other labeling/segmenting
problems.

Features in Second-order CRFs
In the second-order CRFs, we divide features into four categories: edge feature type 1
(e1), state feature type 1 (s1), edge feature type 2 (e2), and state feature type 2 (s2). Only

 7

e1 and s1 are used for first-order CRFs and all of those four are used for second-order
models. The sum of feature, F(s, o, t), is now rewritten as follows,

∑ ∑∑ ∑ −−−− +++=
k h

hhkk
i j

jjii gfgf)s,s,o()s,s,s()s,o()s,s()t,o,s(F t1tt1t2ttt1t λλλλ (7)

where fi (type e1), gj (type s1), fk (type e2), and gh (type s2) are defined as follows,

fi(st -1, st) ≡ [st-1st = l’l]

gj(o, st) ≡ [xj(o, t)][st = l]

fk(st -2, st -1, st) ≡ [st-2st-1 = l”l’][st-1st = l’l]

gh(o, st) ≡ [xh(o, t)][st-1st = l’l]

A feature of type e1 is a special case of type s2 if the logical predicate xh(o, t) is always
true. Because t starts from 1, we need to add a pseudo-state s0 at the beginning of each
sequence. In principle, s0 can be associated with any label l (∈ L = { l1, …,lQ}). However,
this would distort or influence the actual sequential dependencies among labels in
training data. Therefore, it is better to use a pseudo-label l0 for s0. The label set is now L
= { l0, l1, …,lQ}.

Training for and inference in CRFs need an efficient forward-backward computation
which manipulates on transition matrix Mt at every time position t of each sequence
(Lafferty et al., 2001). Unlike in first-order CRFs, the dimension of transition matrixes in
second-order CRFs is |L|2 x |L|2,

 Mt[l”l’][l’l] = exp F(s, o, t) (8)

Supposing that labels l”, l’, and l are represented in integer numbers, the real index of
l’l is l’|L| + l, and similarly for l”l’. The four types of features can be summed to build the
transition matrix Mt as follows: feature type e2 is corresponding to matrix cell [l”l’][l’l];
feature type e1 and s2 are corresponding to matrix column [l’l]; and feature s1 is
corresponding to matrix columns [*l] (where * is an arbitrary label l’).

Please see (Lafferty et al., 2001) and (Sha and Pereira, 2003) for a concrete description
of forward-backward and log-likelihood computations.

Inference in Second-order CRFs
Inference in second-order CRFs using Viterbi algorithm also involves the transition
matrixes. The recursive variable for second-order CRFs is as,

)}1t,os,(Fexp)s,({max)s,(t1t +=+ jkssij ss
jk
ϕϕ (9)

where sk, sj, and si are states of time positions t -1, t, and t + 1, respectively.

If we have some constraints for Viterbi inference, we can apply them at this level. For
example, every matrix cell Mt[l”l’1][l’2l] must be zero if l’1 ≠ l’2 because a state cannot be
associated with two different labels on the same label path. Also, if we want to prevent
the occurrence of a particular pair of consecutive labels lulv, we only need to set the
column [lulv] of the transition matrix to zero. This will disable all label paths going through
this pair of labels.

 8

3.5. Parallel Training of CRFs
While the inference for CRFs based on the Viterbi algorithm is quite efficient, the training
process is much more expensive due to the heavy forward-backward computation to
evaluate the log-likelihood function and its gradient vector for each iterative scaling step.
The time complexity of the training process is O(mNTQ2nS), in which m is the number of
training iterations; N is the number of training data sequences; T is the average length of
training sequences; Q is the number of class labels; n is the number of CRF features;
and S is the searching time of L-BFGS optimization at each step. In practical
implementation, the computational time should be larger due to many other operations
such as numerical scaling (to avoid numerical problems), smoothing, and mapping
between data formats, etc. The time complexity of the second-order CRFs is even much
larger, O(mNTQ4nS), because the number of labels is now squared.

When the number of labels is large, training CRFs on single computer is very time-
consuming. For example, our C/C++ (first-order) CRFs took approximately 100 hours to
train POS tagging task on all sections of WSJ (Penn TreeBank) on a single 2.4GHz
Opteron processor (Linux OS, 8GB RAM).

Cohn et al. (2005) attempted to reduce the training time of CRFs by casting the original
multi-label problem to many binary CRF models, training them independently, and then
combining them using error-correcting codes. This method reduces computational time
significantly. However, training two-label CRF models independently should lose many
important (sequential) dependencies among labels. For example, dependencies and
interactions among verb, adverb, adjective, noun, etc. in part-of-speech tagging problem
are significant for finding the most likely tag path. Therefore, ignoring this type of
information means that the binary CRF models would lose their accuracy considerably.

We, on the other hand, think of a parallel training solution for CRFs on PC clusters or
massively parallel processing systems. Interestingly, the nature sum of the log-likelihood
function allows us to divide the training dataset into different partitions and evaluate log-
likelihood and its gradient on each partition independently. Thus, the parallelization is
quite straightforward.

Input: Training data: D = {(o(j), l(j))}j=1..N; The # of parallel processes: P; And the # of training
iterations: m
Output: Optimal feature weights: θ* = {λ*1, λ*2, …}

Initialization:
- Generate features with intial weights: θ = {λ1, λ2, …}
- Each process loads its training data partitions Di

 (and testing partition if need for evaluation)

Parallel Training (each training iteration):
1. The root process broadcasts θ to all parallel processes
2. Each process Pi compute the local log-likelihood Li and local gradient vector (δL/δλk)i on Di

3. The root process gathers and sums all Li and (δL/δλk)I to obtain the global L and δL/δλk
(note that smoothing is only performed on one process, e.g., the root process)
4. The root process performs L-BFGS search to update the new feature weights θ
5. If #iterations < m Then goto step 1 Else stop

Figure 1. Parallel algorithm for training CRFs

In the parallel algorithm (figure 1), the training dataset is randomly divided into equal
partitions. At each iteration, the local log-likelihood and its gradient vector are evaluated

 9

in parallel on distributed processes; the root process then gathers and sums those
values to obtain the global log-likelihood and its gradient vector; the new setting of
feature weights is computed on the root process using L-BFGS optimization; the root
process then broadcasts the new setting or the feature weights to all the others for the
next training iteration. Synchronization and data communication among processes are
performed using a message passing mechanism. Because the L-BFGS search (even for
millions of feature weights) is very fast and the communication among processes is
usually high-speed link, the parallel algorithm is very efficient and its speed-up ratio
approaches the number of parallel processes.

 10

4. How to Use FlexCRFs

4.1. Format of Training and Testing Data
To use FlexCRFs for segmenting and labeling sequence data. Users must fisrt prepare
training (and testing) data. Training and testing data have the format specified by the
following rules:

<Data> := a list of <Data Sequences>
<A Data Sequence> := a list of <Data Observations>
<A Data Observation> := a list of <Context Predicates> + <A Label>
<A Context Predicate> := A string token
<A label> := A string token

In other words, training or testing data sets consist of a list of data sequences; and two
consecutive data sequences are separated by a blank line. Each data sequence
consists of a series of data observations; and each data observation is placed on a line.
Each data observation contains a list of context predicates and a label that are
separated by blank characters. Context predicates and labels are represented as string
tokens, i.e., strings without blank characters. See the “case study” section for examples
of training and testing data format.

4.2. FlexCRFs’s Options
There are several options for FlexCRFs that control the training and testing process that
are described in the following table.

Option Default value Description
model_dir <current dir> The directory contains the applications
trndata_file train.tagged Training data file (for training)
tstdata_file test.tagged Testing data file (for testing)
ulbdata_file data.untagged Unlabeled data file (for prediction)
model_file model.txt Containing the trained model, i.e. the outputs of the training

process, including dictionary, feature weights, etc. This will
be used for later prediction

trainlog_file trainlog.txt Training log file that save the status information of the
training process

is_logging 1 (yes) Logging or not, 1 (if logging), 0 (if no logging)
order 1 The order or CRF model, set to 1 if the first-order and 2 if

the second-order Markov CRFs
label_of_first_observation <automatic> If this option is not set, a pseudo-label l0 will be generated

for the first observation (s0).
f_rare_threshold 1 Rare threshold for features, i.e., those features whose

occurrence frequency is smaller or equal to this threshold
will be removed

cp_rare_threshold 1 Rare threshold for context predicates, i.e., those context
predicates whose occurrence frequency is smaller or equal
to this value will be removed

num_iterations 50 The number of training iterations
init_lambda_value 0.0 The initial value for the feature weights
sigma_square 100 The sigma square (the variance σ2) for smoothing
m_for_hessian 7 The number of corrections used in L-BFGS search. The

recommend value is between 3 and 7.
evaluate_during_training 0 Whether the testing is performed at every training iteration

or not. Set to 1 if we would like to see the testing accuracy
of the model at every iteration

chunk_evaluate_during_
training

0 Perform evaluation based on chunk/segment or not. Set to
1 if users perform chunk-based evaluation. In this case,
users must specified the chunk information. FlexCRFs only
supports four chunk types: IOB1, IOB2, IOE1, IOE2 of text

 11

chunking and NER.
chunktype IOB2 The valid value is IOB1, IOB2, IOE1, and IOE2
chunk Here an example of chunk specification: b-np:i-np:np. This

means that the chunk starts with label “b-np”, continues
with label “i-np”, and the chunk name is “np” (noun phrase).
This option is repeated several times for all chunks.

nbest 1 This option specifies how many best label paths are
inferred for a given input observation sequence. The
default value is 1 (the best path). If users would like to infer
more than one best path, please set this to larger values,
e.g., 5 or 10

prevfixedlabels This option will be used as a constraint for Viterbi
inference. Here is an example for NP chunking: b-np:i-np|i-
np (represented as IOB2 style). This means that the
allowable labels preceding label “i-np” are only “b-np” or “i-
np”. This option can be repeated several times for all
similar constraints.

nextfixedlabels This option will also be used as a constraint for Viterbi
inference. Here is an example for NP chunking: i-np|i-np:e-
np (represented as IOE2 style). This means that the
allowable labels going right after the label “i-np” are only “i-
np” or “e-np”. This option can be repeated several times for
all constraints like that.

Figure 2. The list of options of FlexCRFs

Figure 2 shows the list of options of FlexCRFs. To train a CRF model using FlexCRFs,
we store all the options in an option file named “option.txt”. The “case study” section will
show what an option file looks like.

4.3. Training, Testing, and Predicting for Unlabeled Data

Training
To train a CRF model, we must prepare the following files:

• Training data file (usually named as “train.tagged”)

• Testing data file (usually named as “test.tagged”) if we would like to perform
the evaluation during training to see the testing accuracy at each training iteration

• Option file (usually named as “option.txt”) that contains necessary options

Putting those files in a directory called the model directory (usually in sub-directory of the
“apps” directory). From this directory (i.e., the current directory), use the following
command to train (and test) the CRF model:

$ crf -all -d ./ -o option.txt

where “-all” means both training and testing. For training only, please replace “-all”
by “-trn”. And “-d ./” specifies the model directory (model_dir) is the current directory.
If we are in another directory other than the model directory, please specify the relative
path to it. For example, the model directory is “NPchunking” and we are in the parent
directory of it, then replace “-d ./” by “-d ./NPchunking”. “-o option.txt”
means the option file is “option.txt”.

The output of the training process is a trained CRF model that is saved in the model file
“model.txt” in the model directory. The model file contains the model information,
such as the mapping between context predicates and integer numbers, the dictionary of
the context predicates, the mapping between labels (strings) and label indexes (integers),

 12

and the trained CRF features (feature name, feature id, feature weight). This model file
will be used to test or predict labels for unlabeled data. The training procedure also
produces the training log file (usually named as “trainlog.txt”).

Testing
To testing a already trained CRF model, we need three files as follows:

• The model file (i.e., “model.txt”) of the previously trained CRF model

• The option file (i.e., “option.txt”)

• And the testing data file (e.g., “test.tagged”)

All those files are stored in the model directory. Supposing that we are in the model
directory, use the following command to perform the testing and evaluation:

$ crf -tst -d ./ -o option.txt

The outputs of the testing process are the standard measures (precision, recall, and F1-
score) based on label and chunks (if the option “chunk_evaluation_during_training” is set
to 1 and chunktype and chunk information are specified in the option file). The training
process also saves the output file “test.tagged.tagged” that contains the content of
“test.tagged” plus the labels predicted by the CRF model.

Predicting for Unlabeld Data
To predict labels for unlabeled data, we need three following files:

• The model file (i.e., “model.txt”) of the previously trained CRF model

• The option file (i.e., “option.txt”)

• And the unlabeled data file (usually named as “data.untagged”) containing
unlabeled data whose labels need to be predicted by the CRF model.

The format of unlabeled data is the same as training and testing data except that the
labels of data observations (at the end of each line) are missing. Suppose we are in the
model directory, use the following command to perform the prediction:

$ crf -prd -d ./ -o option.txt

The output of the prediction process is a file (default name: “data.untagged.model”)
containing the content of the unlabeled data (“data.untagged”) and the labels of data
observations predicted by the CRF model.

4.4. Case Study: Noun Phrase Chunking with FlexCRFs
We describe a case study of noun phrase chunking (NP chunking) with FlexCRFs as an
example of labeling and segmenting for sequence data.

NP Chunking
Text chunking (also known as phrase chunking, phrase recognition, or shallow parsing) -
an intermediate step towards full parsing of natural language – recognizes phrase types
(e.g., noun phrase – NP, verb phrase – VP, prepositional phrase – PP, etc.) in input text
sentences. NP chunking deals with a part of this task: it involves recognizing the chunks
that consist of noun phrases (NPs). Here is an example of a sentence with NP phrase

 13

marking: “[NP Rolls-Royce Motor Cars Inc.] expects [NP its U.S. sales] to remain steady
at [NP about 1,200 cars] in [NP 1990].”

The standard dataset put forward by Ramshaw and Marcus consists of sections 15-18 of
the Wall Street Journal corpus as training set and the section 20 of that corpus as testing
set. The description of NP chunking task and the dataset can be downloaded from this
site: http://staff.science.uva.nl/~erikt/research/np-chunking.html

The evaluation measures for this task are precision, recall, and F1-score based on whole
chunks: precision = a / b; recall = a / c; F1-score = 2 x precision x recall / (precision +
recall), in which a is the number of correctly predicted NP phrases by the CRF model, b
is the number of NP phrases predicted by the CRF model, and c is the number of actual
NP phrases annotated by humans.

 IOB2 IOB1 IOE2 IOE1
Confidence NN B-NP I-NP E-NP I-NP
in IN O O O O
the DT B-NP I-NP I-NP I-NP
pound NN I-NP I-NP E-NP I-NP
is VBZ O O O O
widely RB O O O O
expected VBN O O O O
to TO O O O O
take VB O O O O
another DT B-NP I-NP I-NP I-NP
sharp JJ I-NP I-NP I-NP I-NP
dive NN I-NP I-NP E-NP I-NP
if IN O O O O
trade NN B-NP I-NP I-NP I-NP
figures NNS I-NP I-NP E-NP I-NP
for IN O O O O
September NNP B-NP I-NP E-NP I-NP
, , O O O O
due JJ O O O O
for IN O O O O
release NN B-NP I-NP E-NP E-NP
tomorrow NN B-NP B-NP E-NP I-NP
, , O O O O
fail VB O O O O
to TO O O O O
show VB O O O O
a DT B-NP I-NP I-NP I-NP
substantial JJ I-NP I-NP I-NP I-NP
improvement NN I-NP I-NP E-NP I-NP
from IN O O O O
July NNP B-NP I-NP I-NP I-NP
and CC I-NP I-NP I-NP I-NP
August NNP I-NP I-NP E-NP E-NP
's POS B-NP B-NP I-NP I-NP
near-record JJ I-NP I-NP I-NP I-NP
deficits NNS I-NP I-NP E-NP I-NP
. . O O O O

 Observation sequence Label sequence (according to four representation styles)

The above table shows a sample data sequence (sentence) with NP phrase marking
which will be used as training and testing data. The first two columns constitute the
observation sequence containing tokens (English words or punctuations) and their part-

 14

of-speech tags. The last four columns are the label sequences that are represented
according to four representation styles (IOB2, IOB1, IOE2, IOE1). “B-“ is the beginning
of a NP phrase, “I-“ is the inside of a NP phrase, “E-“ marks the end of a NP phrase, and
“O” is the outside of all NP phrases.

To perform NP chunking using FlexCRFs, we must first prepared training and testing
data from raw data (i.e., the data from the CoNLL2000 shared task) by feature selection
step. Then, we prepare the option file (“option.txt”) and carry out the training process.

Feature Selection

 l” l’ l
B-NP O B-NP I-NP O O O O O …

NN IN DT NN VBZ RB VBN TO VB …
 p-2 p-1 p0 p1 p2

Confidence in the pound is widely expected to take …
 w-2 w-1 w0 w1 w2
 sliding window (size = 5)

Figure 3. A sliding window (size = 5) moving over the data sequence

st-2 st-1 st context preadiate templates xj(o, t) or (for type s2)
Template for feature type e1

 l’ l
Template for feature type e2

l” l’ l
Templates for feature type s1

 l w-2, w-1, w0, w1, w2, w-1w0, w0w1

 l p-2, p-1, p0, p1, p2, p-2p-1, p-1p0, p0p1, p1p2

 l p-2p-1p0, p-1p0p1, p0p1p2

 l p-1p0p1w0

 l p-1w-1, p0w0, p-1p0w-1, p-1p0w0, p-1w-1w0, p0w-1w0

Templates for feature type s2

 l’ l w-1, w0, w-1w0, p-1, p0, p-1p0, p-1w-1, p0w0

 l’ l p-1p0w-1, p-1p0w0, p-1w-1w0, p0w-1w0

Figure 4. Feature templates for NP chunking

Figure 3 shows a sample sequence including observation sequence (each observation
consists of a token and its part-of-speech tag) and label sequence (represented in IOB2
style). A token is denoted as “w” and a part-of-speech tag is denoted as “p”. Figure 4
shows a set of templates for CRF features. Edge features type e1 or e2 are automatically
generated from the training data by FlexCRFs. For collecting state features (type s1 or
s2) we must scan context predicates from raw training data using context predicate

 15

templates xj(o, t) and xh(o, t) in figure 4. This can be done by moving a sliding window of
size 5 (-2, -1, 0, 1, 2) over all the training data sequences.

For example, the context predicate template “w-1” when being applied to the window in
figure 3 will generate the context predicate represented as the string “w:-1:the”. This
string means that “the word at the position -1 (relative to the current window) is “the”.
Similarly, the template “p2” will generate the context predicate “p:2:rb” (note that all
tokens and POS tags are converted to lower case or upper case for consistency). The
template “p-1w-1w0” will generate the context predicate “pww:-1:-1:0:dt:the:pound”,
the combination of the POS tag (“DT”) of the previous word, the previous word (“the”),
and the current word (“pound”). In the three above examples, “w:-1:”, “p:2:”, and
“pww:-1:-1:0:” can be seen as prefixes. One can use any other prefix convention
provided that the prefixes should help to distinguish any two different context predicates.

For those context predicates belong to feature type s2, we put a ‘#’ character at the
beginning to let FlexCRFs know. Thus, we rewrite the three examples of context
predicates above as: “#w:-1:the”, “p:2:rb”, and “#pww:-1:-1:0:dt:the:pound”.
The first and the third belong to both feature type s1 and s2 while the second (generated
from template “p2”) only belongs to feature type s1.

S
equence 1

#w:0:confidence … ww:0:1:confidence:in … #p:0:nn … #pw:0:0:nn:confidence b-np
#w:-1:confidence … #ww:-1:0:confidence:in … #pww:-1:0:0:confidence:in:in o
w:-2:confidence … #w:0:the … ppp:-1:0:1:in:dt:nn … #pww:-1:0:0:in:the:dt b-np
w:-2:in #w:-1:the #w:0:pound w:1:is w:2:widely … p:-2:in #p:-1:dt #p:0:nn … i-np
w:-2:the #w:-1:pound #w:0:is … #pp:-1:0:nn:vbz … #pww:-1:0:-1:pound:is:nn … o
…
w:-2:’s #w:-1:near-record #w:0:deficits w:1:. ww:0:1:deficits:. p:0:nns … i-np
w:-2:near-record … #w:0:. … #pp:-1:0:nns:. … #pww:-1:0:0:deficits:.:. o

<a blank line>

S
equence 2

#w:0:chancellor w:1:of w:2:the … #p:0:nnp p:1:in … #pw:0:0nnp:chancellor o
#w:-1:chancellor #w:0:of … pp:0:1:in:dt … pppw:-1:0:1:0:nnp:in:dt:of … o
w:-2:chancellor #w:-1:of #w:0:the … #p:0:dt … #pww:-1:0:0:of:the:dt b-np
w:-2:of #w:-1:the #w:0:exchequer w:1:nigel … #p:0:nnp p:1:nnp p:2:nnp … i-np
w:-2:the #w:-1:exchequer #w:0:nigel w:1:lawson … ppp:-2:-1:0:dt:nnp:nnp … i-np
…
w:-2:the #w:-1:past #w:0:week … #pp:-1:0:jj:nn … #pww:-1:0:0:past:week:nn … i-np
W:-2:past #w:-1:week #w:0:. … ppp:-2:-1:0:jj:nn:. … #pww:-1:0:0:week:.:. … o

<a blank line>
 …

Figure 5. Input training and testing data format for FlexCRFs

Figure 5 shows the format of training and testing data of NP chunking that serve as input
data for FlexCRFs. This data format is obtained by moving the sliding window (of size 5)
over all training and testing data sequences and collecting context predicates as well as
class labels. In figure 5, each data observation is put on each line that contains a list of
context predicates and a class label (b-np, i-np, or o); the three-dot “…” character in
each line in figure 5 stands for many other context predicates that we do not show
explicitly due to the space limitation. Two consecutive data sequences are separated by
a blank line.

Although It seems to be a little bit complicated to prepare the training and testing data for
FlexCRFs, this operation can be done quite easily by using our feature selection utility
called “chunkingfeasel” (chunking feature selection) in “src” or “bin” directory. This
utility was written only for text chunking (and NP chunking). The corresponding source
code is “chunkingfeasel.cpp” in the directory “src/feasel/Chunking”. Users can

 16

modify this source code according to their feature templates in order to select whatever
kind of context predicates from data as they want. The command line of the feature
selection utility is as follows:
$ chunkingfeasel –lbl/-ulb <raw input data file> <output data file> [tolower]

In which, “-lbl” is used for training and testing data (i.e., for data that have class labels)
and “-ulb” is used when we want to prepare unlabeled data for FlexCRFs. <raw
input data file> is the name of file containing raw data (must be in format of the
data of the CoNLL2000 shared task) and <output data file> is the output file name.
[tolower] is used if we want to convert all characters in the output file into lower case
ones. For example, if the raw training and testing data files of the NP chunking task are
“train.txt” and “test.txt”, respectively. And, the output training and testing files
are named “train.tagged” and “test.tagged”, respectively. And, supposing that all
data are converted to lower case. The two command lines below will perform the feature
selection for training and testing data sets:
$ chunkingfeasel –lbl train.txt train.tagged tolower

$ chunkingfeasel –lbl test.txt test.tagged tolower

Training Options
In order to train a second-order CRF model for the NP chunking, we must set several
options from the option list in figure 2 as follows.

traindata_file=train.tagged
testdata_file=test.tagged
order=2
num_iterations=130
f_rare_threshold=1
cp_rare_threshold=1
init_lambda_val=0.05
evaluate_during_training=1
chunk_evaluate_during_training=1
chunktype=IOB2
chunk=b-np:i-np:np

The above option-value pairs say that:

• The name of training data file is “train.tagged”.

• The name of testing data file is “test.tagged”.

• The order or CRF model is 2 (i.e., the second-order Markov CRFs). The default
value is 1 (i.e., the first-order Markov CRFs).

• The number of training iterations is 130.

• The rare thresholds for features (f_rare_threshold) and context predicates
(cp_rare_threshold) are 1 and 1. These thresholds mean that context
predicates and features whose occurrence frequencies are smaller than or equal
to 1 will be removed.

• The initial value for all feature weights is 0.05 (the default value is zero).

• The evaluation is performed during training (evaluate_during_training=1).
Use zero if we want to train only.

 17

• Chunk-based evaluation is also performed during training (chunk_evaluate_
during_training=1). Use zero if we want to disable this functionality.

• If chunk-based evaluation is set, we must provide the chunk type and the chunk
information. Here, we use the chunk type IOB2 (chunktype=IOB2), and each
NP chunk is marked by using two labels “b-np” and “i-np” (chunk=b-np:i-
np:np).

The above option-pair values are put in the option file (“option.txt”). All the other
options take their default values.

Training and Performance Evaluation
To train the CRF model for the above NP chunking task, we create a model directory
that contains the training and testing data files (“train.tagged” and “test.tagged”)
as well as the option file (“option.txt”). Supposing that the model directory is put in
the “apps” directiory: “apps/Chunking/NPChunking/CoNLL2000”. And suppose the
“crf” (after compiling FlexCRFs) is in the “bin” directory. We execute the following
command to train the CRF model:

$../../../../bin/crf -all -d ./ -o option.txt

The outputs of the training process are two three following files:

• The model file (“model.txt”) that contains all the information about the trained
CRF model including the mapping between the context predicates (string) and
their indexes (integer), the mapping between labels (string) and their indexes
(integer), the dictionary of used context predicates, and the features (with their
trained weights). This file can be used to test or predict labels for unlabeled data.

• The log file of the training process (“trainlog.txt”) that records all kinds of
training information, such as option values, the log-likelihood, the norm of the
weight vector and the gradient vector at each training iterations, the training time
of each iteration, and the ouput of performance evaluation at each iteration if
applicable.

• The test data file (“test.tagged.model”) with two label columns: one is of the
old testing data file (annotated by humans) and another is predicted by the
trained CRF model using the Viterbi algorithm. Users can use this file to evaluate
the learning performance using their own evaluator.

We provide an evaluation utility (“evaluatechk”) for computing the precision, recall,
and F1-measure for both label-based and chunk-based format. This utility is put in the
“bin” and was compiled from three source code files “include/evaluatechunk.h”,
“src/crfs/evaluation/evaluatechunk.cpp”, and “src/evaluatechk.cpp”. To
compute the precision, recall, and F1-measure for “test.tagged.model” file using this
utility, we must prepare an evaluation option file including the following options:

label=b-np
label=i-np
label=o
chunktype=IOB2
chunk=b-np:i-np:np

 18

The above option-value pairs let the “evaluatechk” know the set of labels (b-np, i-np,
o), the chunktype (IOB2), and the chunk information (b-np:i-np:np). These option-pair
values are stored in evaluation option file, e.g., “evaloption.txt”, and suppose that
this file is also in the model directory. To perform the evaluation, we execute the
command below.

../../../../bin/evaluatechk -o evaloption.txt test.tagged.model

The output of the evaluation is the highest testing performance (precision, recall, and F1-
measure) as follows:

The following text shows the log information of the training iteration 70th at which the
highest performance were achieved:

 19

(Note that the above training log file is that of the parallel training of PCRFs on a Cray
XT3 system using 45 parallel processes so the training time is very small. The training
log file on serial systems is exactly the same).

Methods F1-score

Ando & Zhang 2005 (semi-supervised learning, using additional
15 million words as unlabeled data)

94.70

Ours (majority voting among 16 CRFs) 94.73

Ours (CRFs, 417,831 features) 94.57

Kudo & Matsumoto 2001 (voting among SVMs) 94.39

Kudo & Matusmoto 2001 (SVMs) 94.11

Carreras & Marquez 2003 (perceptrons) 94.41

Sha & Pereira 2003 (CRFs, 3.8 million features) 94.38

Zhang et al. 2002 (generalized winnow
+ enhanced linguistic features from a full parser

93.89
94.38

Table 1. NP chunking performance comparison

Table 1 shows the F1-score of the previous systems and ours for NP chunking task on
the CoNLL2000 shared task dataset. Ando and Zhang (2005) proposed a nice semi-
supervised learning framework that can gain additional information from thousands of
auxiliary learning problems relevant to the main learning task. They used additional 15
million words from TREC corpus as unlabeled data to improve this task and obtained the
highest F1-score of 94.70. Kudo and Matsumoto (2001) used SVM combination for this
task. They obtained the highest F1 of 94.11. They voted among SVMs trained according
to different label styles (IOB1, IOB2, IOE1, IOE2) and forward-backward inference and
achieved the highest F1 of 94.39. Carreras and Marquez (2003) used two-layer
perceptrons and achieved the highest F1 of 94.41. Sha and Pereira (2003) also used the
second-order CRFs for NP chunking and they achieved the highest F1 of 94.38 but using
up to 3.8 million features. Zhang et al. (2002) used generalized winnow for this task and
obtained F1-score of 93.89. They exploited extra enhanced linguistic features from a full
parser and got the highest F1 of 94.38.

Our second-order CRF models used only 417,831 features and achieved the highest F1
score of 94.57. This is the highest score among normal machine learning techniques
(i.e., without using auxiliary tools or unlabeled data). We voted among 16 CRF models
trained according to different label styles (IOB2, IOE2) and different initial values for
feature weights (0.00, 0.01, 0.02, 0.03, 0.04, 0.05. 0.06. 0.07), and we obtained the
highest F1-score of 94.73. This is the best result for this task.

 20

5. How to Use PCRFs
The format of training and testing data for PCRFs is the same as that of FlexCRFs. This
means that we also have to convert raw data into the input training (“train.tagged”)
and testing data (“test.tagged”) using feature templates before training the CRF
model using PCRFs. The list options in figure 2 are also applied for PCRFs.

5.1. Data Partitioning and Initialization
Before training the CRF model using PCRFs on parallel systems. We have to divide the
training (and testing) data sets into partitions as well as generate some common data
structures, such as context predicate mapping, context predicate dictionary, and feature
set, that are shared among parallel processes.

Data Partitioning
Suppose that we have two data files: train.tagged and test.tagged, and we want
to train the CRF model on m parallel processes, we have to divide them into m partitions
by the following commands:

$ partition train.tagged m

$ partition test.tagged m

For example, if m = 10, the above commands will generate partitions and save them on
files as follows: train.tagged.0, train.tagged.1, …, train.tagged.9,
test.tagged.0, test.tagged.1, …, test.tagged.9. If m = 100, the output
files are: train.tagged.00, train.tagged.01, …, train.tagged.99,
test.tagged.00, test.tagged.01, …, test.tagged.99. The partition
command is in the “src” and “bin” directories after compiling PCRFs. Thus, users must
specify the relative path to this utility if the model directory is elsewhere in the “apps”
directory.

Initialization
Before training the model with PCRFs on parallel systems, we must initialize some data
structured that are shared among parallel processes, such as the mapping between
context predicates (string) and their integer indexes, the dictionary of context predicates,
and the CRF features (note that the feature weights are set according the value of the
parameter “init_lambda_val”, the default value is zero). The initialization process is
performed using the “pcrfinit” utility (this utility is generated after compiling PCRFs):

$ pcrfinit –d <model directory> -o option.txt

In which <model directory> is the directory that contains the application, and the
option file is “option.txt”.

The output of the initialization process is the model file “model.txt”. This file si similar
to that of FlexCRFs, i.e., contains all information about a CRF models, except that all
feature weights are set to the value of the parameter “init_lambda_val”.

5.2. Parallel Training with PCRFs
To train a CRF model using PCRFs, we must prepare the following files:

 21

• The local training data files generated after partitioning data: train.tagged.01,
train.tagged.02, etc.

• The local testing data files generated after partitioning (i.g., test.tagged.01,
test.tagged.02, etc.) if we would like to perform the evaluation during training
to see the testing accuracy at each training iteration.

• Option file (usually named as “option.txt”) that contains necessary options.

Putting those files in a directory called the model directory (usually in sub-directory of the
“apps” directory). From this this directory (i.e., the current directory), use the following
command to train (and test) the CRF model:

$ <mpirun> -np <#processes> pcrf -all -d ./ -o option.txt

where <mpirun> is a MPI utility that is needed to launch the parallel training process;
The name of this utility depends on platform of the parallel processing systems; “-np
<#processes>” is the option that specifies the number of parallel processes. “pcrf” is
the main program; “-all” means we perform both training and testing. For training only,
please replace “-all” by “-trn”. And “-d ./” specifies the model directory (model_dir)
is the current directory. If we are in another directory other than the model directory,
please specify the relative path to it. For example, the model directory is “Chunking” and
we are in the parent directory of it, then replace “-d ./” by “-d ./Chunking”. “-o
option.txt” means the option file is “option.txt”.

The output of the parallel training process using PCRFs is the same as the output of
FlexCRFs: a trained CRF model that is saved in the model file “model.txt” in the
model directory. The model file contains the model information, such as the mapping
between context predicates and integer numbers, the dictionary of the context
predicates, the mapping between labels (strings) and label indexes (integers), and the
trained CRF features (feature name, feature id, feature weight). This model file will be
used to test or predict labels for unlabeled data. The model files of FlexCRFs and
PCRFs can be used interchangeably because they have the same format. The training
procedure also produces the training log file (usually named as “trainlog.txt”).

5.3. Case Study: Large-Scale Text Chunking with PCRFs

Text Chunking
Text chunking (also known as phrase chunking, phrase recognition, or shallow parsing) -
an intermediate step towards full parsing of natural language – recognizes phrase types
(e.g., noun phrase – NP, verb phrase – VP, prepositional phrase – PP, etc.) in input text
sentences. Here is an example of a sentence with phrase marking: “[NP Rolls-Royce
Motor Cars Inc.] [VP expects] [NP its U.S. sales] [VP to remain] [ADJP steady] [PP at]
[NP about 1,200 cars] [PP in] [NP 1990].”

The training and testing data can be downloaded from the CoNLL2000 shared task1.
This data consists of the same sections of the Wall Street Journal corpus (Penn
TreeBank WSJ) as widely used data for noun phrase chunking: sections from 15 to 18

1 CoNLL2000 shared task: http://www.cnts.ua.ac.be/conll2000/chunking/

 22

as training data (8936 sentences, 211727 tokens) and section 20 as testing data (2012
sentences, 47377 tokens).

The evaluation measures for this task are precision, recall, and F1-score based on whole
chunks: precision = a / b; recall = a / c; F1-score = 2 x precision x recall / (precision +
recall), in which a is the number of correctly predicted phrases by the CRF model, b is
the number of phrases predicted by the CRF model, and c is the number of actual
phrases annotated by humans.

 IOB2 IOB1 IOE2 IOE1
Confidence NN B-NP I-NP E-NP I-NP
in IN B-PP I-PP E-PP I-PP
the DT B-NP I-NP I-NP I-NP
pound NN I-NP I-NP E-NP I-NP
is VBZ B-VP I-VP I-VP I-VP
widely RB I-VP I-VP I-VP I-VP
expected VBN I-VP I-VP I-VP I-VP
to TO I-VP I-VP I-VP I-VP
take VB I-VP I-VP E-VP I-VP
another DT B-NP I-NP I-NP I-NP
sharp JJ I-NP I-NP I-NP I-NP
dive NN I-NP I-NP E-NP I-NP
if IN B-SBAR I-SBAR E-SBAR I-SBAR
trade NN B-NP I-NP I-NP I-NP
figures NNS I-NP I-NP E-NP I-NP
for IN B-PP I-PP E-PP I-PP
September NNP B-NP I-NP E-NP I-NP
, , O O O O
due JJ B-ADJP I-ADJP E-ADJP I-ADJP
for IN B-PP I-PP E-PP I-PP
release NN B-NP I-NP E-NP E-NP
tomorrow NN B-NP B-NP E-NP I-NP
, , O O O O
fail VB B-VP I-VP I-VP I-VP
to TO I-VP I-VP I-VP I-VP
show VB I-VP I-VP E-VP I-VP
a DT B-NP I-NP I-NP I-NP
substantial JJ I-NP I-NP I-NP I-NP
improvement NN I-NP I-NP E-NP I-NP
from IN B-PP I-PP E-PP I-PP
July NNP B-NP I-NP I-NP I-NP
and CC I-NP I-NP I-NP I-NP
August NNP I-NP I-NP E-NP E-NP
's POS B-NP B-NP I-NP I-NP
near-record JJ I-NP I-NP I-NP I-NP
deficits NNS I-NP I-NP E-NP I-NP
. . O O O O

 Observation sequence Label sequence (according to four representation styles)

The above table shows a sample data sequence (sentence) with phrase marking which
will be used as training and testing data. The first two columns constitute the observation
sequence containing tokens (English words or punctuations) and their part-of-speech
tags. The last four columns are the label sequences that are represented according to
four representation styles (IOB2, IOB1, IOE2, IOE1). “B-“ is the beginning of a phrase, “I-
“ is the inside of a phrase, “E-“ marks the end of a phrase, and “O” is the outside of all
phrases.

 23

To perform text chunking using PCRFs, we must first prepared training and testing data
from raw data (i.e., the data from the CoNLL2000 shared task) by feature selection step.
Then, we prepare the option file (“option.txt”) and carry out the training process.

Feature Selection

 l” l’ l
E-NP E-PP I-NP E-NP I-VP I-VP I-VP I-VP E-VP …

NN IN DT NN VBZ RB VBN TO VB …
 p-2 p-1 p0 p1 p2

Confidence in the pound is widely expected to take …
 w-2 w-1 w0 w1 w2
 sliding window (size = 5)

Figure 6. A sliding window (size = 5) moving over the sequence

st-2 st-1 st context preadiate templates xj(o, t) or (for type s2)
Template for feature type e1

 l’ l
Template for feature type e2

l” l’ l
Templates for feature type s1

 l w-2, w-1, w0, w1, w2, w-1w0, w0w1

 l p-2, p-1, p0, p1, p2, p-2p-1, p-1p0, p0p1, p1p2

 l p-2p-1p0, p-1p0p1, p0p1p2

 l p-1p0p1w0

 l p-1w-1, p0w0, p-1p0w-1, p-1p0w0, p-1w-1w0, p0w-1w0

Templates for feature type s2

 l’ l w-1, w0, w-1w0, p-1, p0, p-1p0, p-1w-1, p0w0

 l’ l p-1p0w-1, p-1p0w0, p-1w-1w0, p0w-1w0

Figure 7. Feature templates for text chunking

Figure 6 shows a sample sequence including observation sequence (each observation
consists of a token and its part-of-speech tag) and label sequence (represented in IOE2
style). A token is denoted as “w” and a part-of-speech tag is denoted as “p”. Figure 7
shows a set of templates for CRF features. Edge features type e1 or e2 are automatically
generated from the training data by PCRFs. For collecting state features (type s1 or s2)
we must scan context predicates from raw training data using context predicate
templates xj(o, t) and xh(o, t) in figure 7. This can be done by moving a sliding window of
size 5 (-2, -1, 0, 1, 2) over all the training data sequences.

For example, the context predicate template “w-1” when being applied to the window in
figure 6 will generate the context predicate represented as the string “w:-1:the”. This

 24

string means that “the word at the position -1 (relative to the current window) is “the”.
Similarly, the template “p2” will generate the context predicate “p:2:rb” (note that all
tokens and POS tags are converted to lower case or upper case for consistency). The
template “p-1w-1w0” will generate the context predicate “pww:-1:-1:0:dt:the:pound”,
the combination of the POS tag (“DT”) of the previous word, the previous word (“the”),
and the current word (“pound”). In the three above examples, “w:-1:”, “p:2:”, and
“pww:-1:-1:0:” can be seen as prefixes. One can use any other prefix convention
provided that the prefixes should help to distinguish any two different context predicates.

For those context predicates belong to feature type s2, we put a ‘#’ character at the
beginning to let FlexCRFs know. Thus, we rewrite the three examples of context
predicates above as: “#w:-1:the”, “p:2:rb”, and “#pww:-1:-1:0:dt:the:pound”.
The first and the third belong to both feature type s1 and s2 while the second (generated
from template “p2”) only belongs to feature type s1.

Although It seems to be a little bit complicated to prepare the training and testing data,
this operation can be done quite easily by using our feature selection utility called
“chunkingfeasel” (chunking feature selection) in “src” or “bin” directory. This utility
was written only for text chunking (and NP chunking). The corresponding source code is
“chunkingfeasel.cpp” in the directory “src/feasel/Chunking”. Users can modify
this source code according to their feature templates in order to select whatever kind of
context predicates from data as they want. The command line of the feature selection
utility is as follows:
$ chunkingfeasel –lbl/-ulb <raw input data file> <output data file> [tolower]

in which, “-lbl” is used for training and testing data (i.e., for data that have class labels)
and “-ulb” is used when we want to prepare unlabeled data. <raw input data
file> is the name of file containing raw data (must be in format of the data of the
CoNLL2000 shared task) and <output data file> is the output file. [tolower] is
used if we want to convert all characters in the output file into lower case ones. For
example, if the raw training and testing data files of the chunking task are “train.txt”
and “test.txt”, respectively. And, the output training and testing files are named
“train.tagged” and “test.tagged”, respectively. And, supposing that all data are
converted to lower case. The two command lines below will perform the feature selection
for training and testing data sets:
$ chunkingfeasel –lbl train.txt train.tagged tolower

$ chunkingfeasel –lbl test.txt test.tagged tolower

Training Options
In order to train a second-order CRF model for the NP chunking, we must set several
options from the option list in figure 2 as follows.

traindata_file=train.tagged
testdata_file=test.tagged
order=2
num_iterations=130
f_rare_threshold=1
cp_rare_threshold=1
init_lambda_val=0.05
evaluate_during_training=1
chunk_evaluate_during_training=1

 25

chunktype=IOE2
chunk=i-np:e-np:np
chunk=i-pp:e-pp:pp
chunk=i-vp:e-vp:vp
chunk=i-sbar:e-sbar:sbar
chunk=i-adjp:e-adjp:adjp
chunk=i-advp:e-advp:advp
chunk=i-prt:e-prt:prt
chunk=i-lst:e-lst:lst
chunk=i-intj:e-intj:intj
chunk=i-conjp:e-conjp:conjp
chunk=i-ucp:e-ucp:ucp

The above option-value pairs say that:

• The name of training data file is “train.tagged”.

• The name of testing data file is “test.tagged”.

• The order or CRF model is 2 (i.e., the second-order Markov CRFs). The default
value is 1 (i.e., the first-order Markov CRFs).

• The number of training iterations is 130.

• The rare thresholds for features (f_rare_threshold) and context predicates
(cp_rare_threshold) are 1 and 1. These thresholds mean that context
predicates and features whose occurrence frequencies are smaller than or equal
to 1 will be removed.

• The initial value for all feature weights is 0.05 (the default value is zero).

• The evaluation is performed during training (evaluate_during_training=1).
Use zero if we want to train only.

• Chunk-based evaluation is also performed during training (chunk_evaluate_
during_training=1). Use zero if we want to disable this functionality.

• If chunk-based evaluation is set, we must provide the chunk type and the chunk
information. Here, we use the chunk type IOE2 (chunktype=IOE2), and each
phrase type (i.e., chunk type) is marked by using two labels. For example, NP
phrase is marked by “i-np” and “e-np” (chunk=i-np:e-np:np), VP phrase is
marked using two labels “i-vp” and “e-vp” (chunk=i-vp:e-vp:vp).

The above option-pair values are put in the option file (“option.txt”). All the other
options take their default values.

Parallel Training
To train the CRF model for the above NP chunking task, we create a model directory
that contains the training and testing data files (“train.tagged” and “test.tagged”)
as well as the option file (“option.txt”). Supposing that the model directory is put in
the “apps” directiory: “apps/Chunking/Chunking/CoNLL2000”. And suppose the
partitioning utility “partition”, initialization utility “pcrfinit” and PCRFs main
program “pcrf” (after compiling PCRFs) are all in the “bin” directory. Suppose we train
PCRFs on 90 parallel processors of a Cray XT3 system. We execute the following
commands to partition data, initialize, and train the CRF model:

 26

• Data Partitioning (suppose we are in “apps/Chunking/Chunking/CoNLL2000”
directory):

$../../../../bin/partition train.tagged 90

$../../../../bin/partition test.tagged 90

The outputs of data partitioning are: train.tagged.00, train.tagged.01, …,
train.tagged.89, and test.tagged.00, test.tagged.01, …, test.tagged.89.

• Initialization:
$../../../../bin/pcrfinit –d ./ -o option.txt

The output of initialization is the model file “model.txt”

• Parallel Training (the model file “model.txt” and all the local training and testing
data files must be available on all computing nodes of the parallel system in order
that those nodes can read the initialization information of the CRF model and their
data partitions independently and simultaneously. This can be done using a network
file system such as NFS. Almost all massively parallel processing systems support
this function):

$ yod –np 90 ../../../../bin/pcrf –all –d ./ -o option.txt

The above command launches the PCRFs on a Cray XT3 system using 90 parallel
processors. On other systems such as Altix, users can replace “yod” by “mpirun”.

The outputs of the training process are two three following files:

• The model file (“model.txt”) that contains all the information about the trained
CRF model including the mapping between the context predicates (string) and
their indexes (integer), the mapping between labels (string) and their indexes
(integer), the dictionary of used context predicates, and the features (with their
trained weights). This file can be used to test or predict labels for unlabeled data.

• The log file of the training process (“trainlog.txt”) that records all kinds of
training information, such as option values, the log-likelihood, the norm of the
weight vector and the gradient vector at each training iterations, the training time
of each iteration, and the output of performance evaluation at each iteration if
applicable.

Figure 8 shows the training information (including log-likelihood, the norm of the gradient
vector, the norm of the feature weights, training time, and the performance evaluation) of
the training iteration 63 at which the highest performance (F1 = 94.05) was achieved.

 27

Figure 8. Training information of the iteration yielding the highest performance

 28

Methods F1-score

Ando & Zhang 2005 (semi-supervised learning, using additional
15 million words as unlabeled data)

94.39

Ours (majority voting among 16 CRFs) 94.15

Ours (CRFs, 450,063 features) 94.05

Kudo & Matsumoto 2001 (voting among SVMs) 93.91

Kudo & Matusmoto 2001 (SVMs) 93.85

Carreras & Marquez 2003 (perceptrons) 93.74

Zhang et al. 2002 (generalized winnow
+ enhanced linguistic features from a full parser

93.57
94.17

Table 2. Text chunking performance comparison

Table 2 shows the F1-score of the previous systems and ours for text chunking task on
the CoNLL2000 shared task dataset. Ando and Zhang (2005) proposed a nice semi-
supervised learning framework that can gain additional information from thousands of
auxiliary learning problems relevant to the main learning task. They used additional 15
million words from TREC corpus as unlabeled data to improve this task and obtained the
highest F1-score of 94.39. Kudo and Matsumoto (2001) used SVM combination for this
task. They obtained the highest F1 of 93.85. They voted among SVMs trained according
to different label styles (IOB1, IOB2, IOE1, IOE2) and forward-backward inference and
achieved the highest F1 of 93.91. Carreras and Marquez (2003) used two-layer
perceptrons and achieved the highest F1 of 93.74. Sha and Pereira (2003) did not report
results on text chunking task. Zhang et al. (2002) used generalized winnow for this task
and obtained F1-score of 93.57. They exploited extra enhanced linguistic features from a
full parser and got the highest F1 of 94.17.

Our second-order CRF models used only 450,063 features and achieved the highest F1
score of 94.05. This is the highest score among normal machine learning techniques
(i.e., without using auxiliary tools or unlabeled data). We voted among 16 CRF models
trained according to different label styles (IOB2, IOE2) and different initial values for
feature weights (0.00, 0.01, 0.02, 0.03, 0.04, 0.05. 0.06. 0.07), and we obtained the
highest F1-score of 94.15.

We also performed large-scale training for chunking and NP chunking tasks on larger
datasets as follows:

Dataset Description

CoNLL2000-L - Training set: sections from 02 to 21 of WSJ corpus (Penn TreeBank III)
- Testing set: section 00 of that corpus

CV-test WSJ 25-fold cross-validation tests on all 25 sections of WSJ
Each fold:

- Take one section as the testing set,
- The other 24 sections the training set

We performed both chunking and NP chunking on CoNLL2000-L, and NP chunking on
25-foldCV-test WSJ.

 29

Table 3. 25-fold cross-validation test of NP chunking on all 25 sections of WSJ corpus

Table 4. Results of chunking and NP chunking with different initial feature weights on the

CoNLL2000-L (training: sections 02-21, training: section 00 of WSJ corpus)

Methods NP Chunking
F1-score

Chunking
F1-score

Ours (majority voting among 16 CRFs) 96.74 96.33

Ours (CRFs, 450,063 features) 96.59 96.18

Kudo & Matsumoto 2001 (voting among SVMs) 95.77 -

Kudo & Matusmoto 2001 (SVMs) 95.34 -

Sang 2000 (system combination) 94.90 -

Table 5. Accuracy comparison of chunking and NP chunking on CoNLL2000-L dataset

In order to investigate NP chunking performance on the whole WSJ, we performed a 25-
fold cross-validation test on all 25 sections of it. We train 50 CRF models for 25 folds

 30

using two label representation styles (IOB2, IOE2) and the same intial value of θ (= {0.00,
0.00, …, 0.00}) for feature weights. The numbers of features of these models are about
1.5 million. Table 3 show the higest F1-score of the 50 CRF models. The italic columns
show the maximum F1 between the two models using different label styles, i.e., using
IOB2 and IOE2. The last row (right hand side) gives the average F1 scores of those CRF
models, the highest is 96.45.

Table 4 gives the results of NP chunking and chunking on the CoNLL2000-L dataset.
We achieved the highest F1 scores of 96.59 (using 1,350,514 features, initial θ = {0.05,
0.05, …, 0.05}, IOE2) for NP chunking and of 96.18 (using 1,466,312 features, θ = {0.06,
0.06, …, 0.06}, IOE2) for chunking. The highest F1 scores after voting among CRFs are
96.74 and 96.33 for NP chunking and chunking, respectively.

Table 5 shows the accuracy comparison of NP chunking and chunking on CoNLL2000-L
dataset. Sang (2000) performed majority voting among classifiers using different label
styles and got the highest F1 of 94.60. Kudo and Matsumoto (2001) also reported the F1
of 95.34 on this dataset using SVMs. They performed the voting among SVMs and
obtained the highest score of 95.77. No previous work reported results of chunking on
this dataset. Our CRFs used from 1.3 to 1.5 million features and achieved the F1 scores
of 96.59 for NP chunking and 96.18 for chunking. We also voted among CRFs and
obtained the highest scores of 96.74 and 96.33, respectively. Our method reduces
22.93% error relative to the best NP chunking result (i.e., that of Kudo and Matsumoto).

Computational Time

Task # training iterations Training time

NP Chunking Single process 45 parallel processes

CoNLL2000
CoNLL2000-L
CV test of WSJ

130
130
150

4h50’
38h57’

55h59’ (estimated)

6’52’’
56’

1h21’

Chunking Single process 90 parallel processes

CoNLL2000
CoNLL2000-L

140
200

190h32’ (estimated)
1348h26’

2h29’
17h46’

Table 6. Training time of the second-order CRFs on single and parallel processes

Figure 9. Training time and speed-up ratio of the first-fold of 25-fold CV-test on WSJ

 31

We also measure the computational time of the second-order CRF models. Table 6
reports the training time of 5 tasks using a single process and parallel processes. For
example, 130 training iterations of NP chunking on CoNLL2000 dataset using a single
process took 4h50’ while they took only 6’52” if using 45 parallel processes. Similarly,
each fold of 25-fold CV test of WSJ took an average training time of 1h21’ on 45 parallel
processes while it took approximately 56h if using one process. All-phrase chunking are
much more time-consuming than NP chunking. This is because the numbers of labels
are 23 on CoNLL2000 and 24 on CoNLL2000-L (including the pseudo-label l0). For
instance, chunking on the CoNLL2000-L dataset requires about 1348h (more than 56
days) for 200 iterations on a single process whereas it took only 17h46’ on 90 parallel
ones.

Figure 9 shows the change of training time and the speed-up ratio when we train on
different nu
dra he

mbers of parallel processes. We can see that the training time decreases
matically and the real speed-up ratio approaches the perfect line. This is because t

data exchanged at each training iteration include only log-likelihood function, its gradient
vector, and the vector of feature weights. This amount of data is much smaller (even we
use millions of features) in comparison with high-speed links among processors.

 32

6. Developing Applications upon FlexCRFs and PCRFs
In order to build sequential label applications upon FlexCRFs and PCRFs. Users should
follow the steps below:

• Obtain the raw training (and testing) data

• Choosing feature templates for the CRF model

• Preparing the training (and testing) data (“train.tagged” and “test.tagged”) for
FlexCRFs or PCRFs by applying those feature templates to the raw training (and
testing) data. Users must design and write their own feature selection utility.

• Preparing option file “option.txt” including option-value pairs that are necessary
for the application.

• If using PCRFs, users must partition data and initialize the CRF model.

• Then, training the CRF model using FlexCRFs or PCRFs

• The trained CRF model can then be used to predict labels for unlabeled data. The
unlabeled data must be the same format as training or testing data except that the
label column (at the end of each line) is missing.

Also, users can modify the source code of FlexCRFs and PCRFs to fit their applications.

 33

Acknowledgements
We would like to thank professor Jorge Nocedal, Department of Electrical and Computer
Engineering, School of Engineering and Applied Science, Northwestern University, for
his provision of L-BFGS FORTRAN source code. www.ece.northwestern.edu/~nocedal/

The C based L-BFGS used in this project is borrowed from CRF++ project developed by
Taku Kudo (www.chasen.org/~taku/software/CRF++/). We would like to thank him for his
open source project.

A part of this project, the training section (e.g., the computation of log-likelihood function
and its gradient vector), is based on the Java source code of CRF project developed by
professor Sunita Sarawagi, KR School of Information Technology, IIT Bombay. We
would like to thank prof. Sunita Sarawagi for sharing her CRF package and answering
related questions. www.it.iitb.ac.in/~sunita/

References
(Ando and Zhang, 2005): R. Ando and T. Zhang. A high-performance semi-supervised
learning methods for text chunking. In Proc. of ACL, 2005.

(Berger et al., 1996): A. Berger, A. Della Pietra, and J. Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39-71, 1996.

(Carreras and Marquez, 2003): X. Carreras and L. Marquez. Phrase recognition by
filtering and ranking with perceptrons. In Proc. of RANLP, 2003.

(Chen and Rosenfeld, 1999): S. Chen and R. Rosenfeld. A gaussian prior for smoothing
maximum entropy models. Technical Report CMU-CS-99-108. Carnegie Mellon
University, 1999.

(Cohn et al., 2005): T. Cohn, A. Smith, M. Osborne. Scaling conditional random fields
using error-correcting codes. In Proc. of ACL, 2005.

(Kudo and Matsumoto, 2001): T. Kudo and Y. Matsumoto. Chunking with support vector
machines. In Proc. of ACL-NAACL, 2001.

(Lafferty et al., 2001): J. Lafferty, A. McCallum, and F. Pereira. Conditional random
fields: probabilistic models for segmenting and labeling sequence data. In Proc. of ICML,
pp.282-289, 2001.

(Liu and Nocedal, 1989): D. Liu and J. Nocedal. On the limited memory BFGS method
for large-scale optimization. Mathematical Programming, 45:503-528, 1989.

(Rabiner, 1989): L. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. In Proc. of IEEE, 77(2):257-286, 1989.

(Sang, 2000): E. Sang. Noun phrase representation by system combination. In Proc. of
ANLP-NAACL, 2000.

(Sha and Pereira, 2003): F. Sha and F. Pereira. Shallow parsing with conditional random
fields. In Proc. of HLT/NAACL, 2003.

(Zhang et al., 2002): T. Zhang, F. Damerau, and D. Johnson. Text chunking based on a
generalization of winnow. Journal of Machine Learning Research, 2:615-637.

 34

